Inhibition of hepatitis C virus (HCV) replication by specific RNA aptamers against HCV NS5B RNA replicase.

نویسندگان

  • Chang Ho Lee
  • Young Ju Lee
  • Ji Hyun Kim
  • Jong Hoon Lim
  • Jung-Hye Kim
  • Wonkyo Han
  • Soo-Han Lee
  • Gyu-Jeong Noh
  • Seong-Wook Lee
چکیده

This study identified specific and avid RNA aptamers consisting of 2'-hydroxyl- or 2'-fluoropyrimidines against hepatitis C virus (HCV) NS5B replicase, an enzyme that is essential for HCV replication. These aptamers acted as potent decoys to competitively impede replicase-catalyzed RNA synthesis activity. Cytoplasmic expression of the 2'-hydroxyl aptamer efficiently inhibited HCV replicon replication in human liver cells through specific interaction with, and sequestration of, the target protein without either off-target effects or escape mutant generation. A selected 2'-fluoro aptamer could be truncated to a chemically manufacturable length of 29 nucleotides (nt), with increase in the affinity to HCV NS5B. Noticeably, transfection of the truncated aptamer efficiently suppressed HCV replication in cells without escape mutant appearance. The aptamer was further modified through conjugation of a cholesterol or galactose-polyethylene glycol ligand for in vivo availability and liver-specific delivery. The conjugated aptamer efficiently entered cells and inhibited genotype 1b subgenomic and genotype 2a full-length HCV JFH-1 RNA replication without toxicity and innate immunity induction. Importantly, a therapeutically feasible amount of the conjugated aptamer was delivered in vivo to liver tissue in mice. Therefore, cytoplasmic expression of 2'-hydroxyl aptamer or direct administration of chemically synthesized and ligand-conjugated 2'-fluoro aptamer against HCV NS5B could be a potent anti-HCV approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Pre-treatment mutations leading to resistance to direct hepatitis C virus blocking drugs in patients with chronic hepatitis C

Background and objective: Human is the only host of hepatitis C virus. This virus has a positive single stranded RNA and lipoprotein envelop that has 7 confirmed genotypes. According to studies, genotypes 1a, 3a and 1b are the most common genotypes in Iran. No effective vaccine against HCV infection has been developed instead, advances in antiviral treatment using drugs that directly affect spe...

متن کامل

Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase.

The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal...

متن کامل

Hepatitis C Virus RNA Replication Depends on Specific Cis- and Trans-Acting Activities of Viral Nonstructural Proteins

Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) g...

متن کامل

Characterization of aurintricarboxylic acid as a potent hepatitis C virus replicase inhibitor.

BACKGROUND Hepatitis C virus (HCV) NS5B is an essential component of the viral replication machinery and an important target for antiviral intervention. Aurintricarboxylic acid (ATA), a broad-spectrum antiviral agent, was evaluated and characterized for its anti-NS5B activity in vitro and in HCV replicon cells. METHODS Recombinant NS5B, HCV replicase and Huh-7 cells harbouring the subgenomic ...

متن کامل

The Hepatitis C Virus Replicase: Insights into RNA-dependent RNA Replication and Prospects for Rational Drug Design

The enzymes involved in the replication of the Hepatitis C Virus (HCV) have been some of the most intensely studied proteins in recent history because they are targets for rational drug design. HCV is an established and growing menace to human health that is without a current vaccine or a widely affordable and effective treatment. Traditional antiviral screening is difficult with HCV because of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 87 12  شماره 

صفحات  -

تاریخ انتشار 2013